Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
4.
Geriatrics (Basel) ; 7(6)2022 Dec 19.
Article in English | MEDLINE | ID: covidwho-2163303

ABSTRACT

Global public health is significantly challenged due to the continuing COrona VIrus Disease 2019 (COVID-19) outbreak brought forth by the severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) [...].

13.
J King Saud Univ Sci ; 34(5): 102086, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1945713

ABSTRACT

A compound that could inhibit multiple targets associated with SARS-CoV-2 infection would prove to be a drug of choice against the virus. Human receptor-ACE2, receptor binding domain (RBD) of SARS-CoV-2 S-protein, Papain-like protein of SARS-CoV-2 (PLpro), reverse transcriptase of SARS-CoV-2 (RdRp) were chosen for in silico study. A set of previously synthesized compounds (1-5) were docked into the active sites of the targets. Based on the docking score, ligand efficiency, binding free energy, and dissociation constants for a definite conformational position of the ligand, inhibitory potentials of the compounds were measured. The stability of the protein-ligand (P-L) complex was validated in silico by using molecular dynamics simulations using the YASARA suit. Moreover, the pharmacokinetic properties, FMO and NBO analysis were performed for ranking the potentiality of the compounds as drug. The geometry optimizations and electronic structures were investigated using DFT. As per the study, compound-5 has the best binding affinity against all four targets. Moreover, compounds 1, 3 and 5 are less toxic and can be considered for oral consumption.

16.
Hum Vaccin Immunother ; 18(5): 2065824, 2022 11 30.
Article in English | MEDLINE | ID: covidwho-1860753

ABSTRACT

The emergence of different variants of SARS-CoV-2, including the Omicron (B.1.1.529) variant in November 2021, has resulted in a continuous major health concern at a global scale. Presently, the Omicron variant has spread very rapidly worldwide within a short time period. As the most mutated variant of SARS-CoV-2, Omicron has instilled serious uncertainties on the effectiveness of humoral adaptive immunity generated by COVID-19 vaccination or an active viral infection as well as the protection provided by antibody-based immunotherapies. Amidst such high public health concerns, the need to carry out booster vaccination has been emphasized. Current evidence reveals the importance of incorporating booster vaccination using several vaccine platforms, such as viral vector- and mRNA-based vaccines, as well as other platforms that are under explorative investigations. Further research is being conducted to assess the effectiveness and durability of protection provided by booster COVID-19 vaccination against Omicron and other SARS-CoV-2 variants.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics
17.
Beni Suef Univ J Basic Appl Sci ; 10(1): 47, 2021.
Article in English | MEDLINE | ID: covidwho-1817312

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of ongoing global pandemic of coronavirus disease 2019 (COVID-19), has infected millions of people around the world, especially the elderly and immunocompromised individuals. The infection transmission rate is considered more rapid than other deadly pandemics and severe epidemics encountered earlier, such as Ebola, Zika, Influenza, Marburg, SARS, and MERS. The public health situation therefore is really at a challenging crossroads. MAIN BODY: The internal and external and resident microbiota community is crucial in human health and is essential for immune responses. This community tends to be altered due to pathogenic infections which would lead to severity of the disease as it progresses. Few of these resident microflora become negatively active during infectious diseases leading to coinfection, especially the opportunistic pathogens. Once such a condition sets in, it is difficult to diagnose, treat, and manage COVID-19 in a patient. CONCLUSION: This review highlights the various reported possible coinfections that arise in COVID-19 patients vis-à-vis other serious pathological conditions. The local immunity in lungs, nasal passages, oral cavity, and salivary glands are involved with different aspects of COVID-19 transmission and pathology. Also, the role of adaptive immune system is discussed at the site of infection to control the infection along with the proinflammatory cytokine therapy.

18.
J Med Virol ; 94(5): 1761-1765, 2022 05.
Article in English | MEDLINE | ID: covidwho-1680473

ABSTRACT

The emergence of Omicron (B.1.1.529) variant of SARS-CoV-2 has resulted into a very massive surge in COVID-19 cases worldwide. Due to continuous emergence of multiple variants of SARS-CoV-2, the ongoing pandemic has caused severe morbidity and mortality in last two years. The rate of infectivity of Omicron variant is much higher than Delta variant and in a very quick time Omicron has displaced the Delta variant and now become a dominant variant across the globe. The twin combination of Omicron and Delta variant is triggering a Tsunami wave of ever high surges in COVID-19 cases worldwide. This article highlights the global threats and challenges posed by Omicron, and strategies to counter it with a particular focus on Indian sub-continent.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , Humans , India/epidemiology , Pandemics , SARS-CoV-2/genetics
20.
Journal of Saudi Chemical Society ; : 101367, 2021.
Article in English | ScienceDirect | ID: covidwho-1472074

ABSTRACT

The current COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants, remains a serious health hazard globally. The SARS-CoV-2 Mpro and spike proteins, as well as the human ACE2 receptor, have previously been reported as good targets for the development of new drug leads to combat COVID-19. Various ligands, including synthetic and plant-derived small molecules, can interact with the aforementioned proteins. In this study, we investigated the interaction of eight phytochemicals, from selected medicinal plants (Aegle marmelos, Azadirachta indica, and Ocimum sanctum) commonly used in Indian traditional medicine, with SARS-CoV-2 Mpro (PDBID: 6LU7), SARS-CoV-2S spike protein (PDB ID: 6M0J) and the human ACE2 receptor (PDB ID: 6M18). All compounds were subjected to density functional theory (DFT) and frontier molecular orbitals (FMO) analysis to determine their geometry, and key electronic and energetic properties. Upon examining the interactions of the phytochemicals with the human ACE2 receptor and the SARS-CoV-2 Mpro, spike protein targets, two compounds (C-5 and C-8) were identified as the best binding ligands. These were further examined in MD simulation studies to determine the stability of the ligand-protein interactions. QSAR, pharmacokinetic and drug-likeness properties studies revealed that C-5 may be the best candidate to serve as a template for the design and development of new drugs to combat COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL